High Quality Time-Scale Modification of Speech using A Peak Alignment Overlap-Add Algorithm (PAOLA)

2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003.

David Dorran, Robert Lawlor and Eugene Coyle

教授:陳福坤 老師學生:張育豪

Outline

- 1. Introduction
- 2. Synchronized Overlap Add (SOLA)
- 3. Peak Alignment Overlap Add (PAOLA)
- 4. Computational Load Comparison
- 5. Output Quality Comparison
- 6. Conclusion

Introduction

- TSM(Time Scale Modification)是一種可以讓聲音的速度變快或是變慢,而且音調(Pitch)不變的方法
- TSM的技術分成為:
 - 頻率域 (Phase Vocoder...etc)
 - 空間域 (OLA、SOLA、SAOLA...etc)
- ■本篇作者將本篇方法PAOLA與自己提出過的方法 SAOLA做比較

■ SOLA是基於交相關函數找出分析音框x_m以及合成音框y中 波形最相似的地方然後進行疊加動作

$$R[k] = \frac{\sum_{i=0}^{L-1} x[mS_a + i]y[mS_s + k + i]}{\sqrt{\sum_{i=0}^{L-1} x^2[mS_a + i]} \sqrt{\sum_{i=0}^{L-1} y^2[mS_s + k + i]}}$$

alpha >1 速度變慢,alpha<1 速度變快N 音框長度 S_a =N/2 分析音框長度 S_s =alpha* S_a 合成音框長度 L爲疊加區域長度 k {-N/2,N/2} 搜尋範圍SR

- 在SOLA中,參數N, S_a ,以及搜尋範圍SR都是固定的
- 但是我們可以在SOLA計算中發現到其搜尋範圍是不固定 的
- 所以作者提出了一個搜尋範圍固定,而且可以包含到 SOLA所找到的值的方式,即稱為SAOLA(Synchronized Adaptive Overlap Add)
- 作者將Sa的計算改成爲

$$S_a = \frac{N}{2 \times alpha}$$

SAOLA過程 alpha=0.5

- 1. 將訊號x切分爲window個長度N爲的分析音框 x_m $0 \leq m < n$ 。
- 找出目前分析子音框 x_m ,搜尋從0到SR-1距離之間的最大 波峰位置 p_x 。
- 3. 找出目前合成音框y的長度 M_m ,再往前SR距離之間找尋最大波峰位置 p_v 。
- 4. 最後將合成音框找尋到的最大波峰位置 $y_m(p_y)$ 與分析子音框 $x_m(p_x)$ 的依淡出淡入的加權方式進行疊加動作。

■參數設定

- > Frame size N=240
- > alpha=0.5
- > S_a=N/(2 × alpha)=240
- $> S_s = alpha \times S_a = 0.5 \times 240 = 120$
- > SR=N-S_s=120

1. x_m is the m^{th} input frame and is given by

$$x_m = x(mS_a + j), \quad 0 \le j < N$$

 S_a is the length of analysis frame N is the length of frame

the maximum peak $x_m(p_x)$ is found in the region $x_m(j)$, $0 \le j < SR$,

For the m^{th} iteration, the PAOLA algorithm first searches the current output for the maximum peak $y_{\rm m}(p_{\rm y})$ in the region $y_{\rm m}(M_{\rm m}\text{-j})$, $0 \le j < SR$

- M_m is the length of the current output y_m after m iterations
- \blacksquare SR is the length of the search region

4. The m^{th} input frame is then overlap-added with y_m such that the located peaks $x_m(p_x)$ and $y_m(p_y)$ are aligned producing y_{m+1}

$$L_m = p_x + M_m - p_y + 1$$

The overlapping regions of y_m and the m^{th} input frame are weighted prior to combination resulting in

$$y_{m+1}(j) = y_{m}(j), \quad 0 \le j \le M_{m} - L_{m} - 1$$

$$y_{m+1}(M_{m} - L_{m} + j) = y_{m}(M_{m} - L_{m} + j)$$

$$\times (1 - f(j)) + x_{m}(j) \times f(j), \quad 0 \le j \le L_{m} - 1$$

$$y_{m+1}(M_{m} - L_{m} + j) = x_{m}(j), \quad L_{m} \le j \le N$$

$$f(j) = \begin{cases} 0, j < 0 \\ \frac{j}{L_m - 1}, 0 \le j \le L_m - 1 \\ 1, n > L_m - 1 \end{cases}$$

a. $p_x=0$ and $p_y=M_m$, then

$$L_m = p_x + M_m - p_y + 1$$

$$L_m = 1$$

b. p_x =SR-1 and p_y = M_m -(SR-1), then L_m =2SR-1

$$L_{m} = p_{x} + M_{m} - p_{y} + 1$$

$$L_{m} = SR - 1 + M_{m} - (M_{m} - (SR - 1)) + 1$$

$$L_{m} = 2SR - 1$$

採用Sa=N/(2×alpha)的原因

$$S_a = N/2 = 120$$

$$S_s = alpha \times S_a = 0.5 \times 120 = 60$$

$$SR = N - S_s = 180$$

$$M_m = 460, p_x = 152, p_y = 334$$

$$L_m = 152 + 460 - 334 + 1 = 279$$

 $\overline{} M_m = 240, p_x = 26, p_y = 238, L_m = 29$

Computational Load Comparison

	SAOLA	PAOLA
Multiplies	$2\alpha \log_2(3N) + 3\alpha$	$\left(\frac{\left 1-\alpha\right }{L_{stat}-SR}\right)2SR$
Additions	$3\alpha \log_2(3N) + \frac{\alpha}{2} + \frac{8\alpha}{3N}$	$\left(\frac{\left 1-\alpha\right }{L_{stat}-SR}\right)SR$
Comparisons	α	$\left(\frac{\left 1-\alpha\right }{L_{stat}-SR}\right)$ 2SR

Output Quality Comparison alpha=0.5

Output Quality Comparison alpha=2

Conclusion

■ PAOLA的語音品質相當接近於SAOLA的品質, 且PAOLA在執行速度上比SAOLA快8倍