An efficient key-management scheme for hierarchical access control based on elliptic curve cryptosystem

Fun-Gwo Jeng, Chung-Ming Wang
The Journal of Systems and Software 2006

Speaker: Wei-Lun Huang
Date: 2009/08/05
Outline

- Introduction
- A partially ordered user hierarchy
- An efficient key-management scheme for hierarchical access control based on elliptic curve cryptosystem
 - Key generation algorithm
 - Key derivation algorithm
 - Example of adding and deleting a class
- Conclusion
Introduction

- In an organization, the users and their authorized data are organized into a group of disjoint sets of security classes, and each user is assigned to a certain security class called his security clearance.

- In this scheme, each class in the hierarchy is allowed to select its own secret key. And a central authority (CA) is requires.

- The problem of efficiently adding or deleting classes can be solved without the necessity of regenerating keys for all the users in the hierarchy.
A partially ordered user hierarchy

Fig 1:
Key generation algorithm (1/3)

CA:

- Step 1: CA determines an elliptic group $E_p(a,b)$, and selects a base point $G = (x, y)$ from $E_p(a,b)$, and make G public.

- Step 2: CA selects an algorithm $\tilde{A}:(x, y) \rightarrow \nu$, for representing a point on E_p as a real number ν, and make \tilde{A} public.

- Step 3: CA choose a secret parameter n_{CA}, and make P_{CA} public, where $P_{CA} = n_{CA} \cdot G$.
Key generation algorithm(2/3)

- Every classes
 - Step 1: Each C_i choose its own secret key K_i and secret parameter n_i.
 - Step 2: Makes the $P_i (= n_i \cdot G)$ public.
 - Step 3: Encrypts the point (K_i, n_i) by adding kP_{CA} to it, and send point $\{kG, (K_i, n_i) + kP_{CA}\}$ to CA, where k is a positive integer selected randomly.
Key generation algorithm (3/3)

- CA
 - Step 1: When CA got \{kG, (K_i, n_i) + kP_{CA}\} from every \(C_i\), CA will use \(n_{CA}\) to decrypts and derive \((K_i, n_i)\).
 \[(K_i, n_i) + kP_{CA} - n_{CA}(k \cdot G) = (K_i, n_i) + k(n_{CA} \cdot G) - n_{CA}(k \cdot G) = (K_i, n_i)\]
 - Step 2: CA construct the polynomials \(H_i(x)\) for every \(C_i\).
 \[
 H_i(x) = \prod_i (x - \tilde{A}(n_i, P_i)) + K_i
 \]
Key derivation algorithm (1/4)

Each class

- Step 1: Get the public parameters $H_j(x)$ and P_j of u_j.

- Step 2: Computer $H_j(\tilde{A}(n_i P_j))$ and K_j can be obtained.
Key derivation algorithm (2/4)

- Example: If \(C_i \) wants derives \(K_j \) from \(C_j \) (\(C_j \leq C_i \)).
 - Step 1: \(C_i \) have \(H_j(x) \) and \(P_j \) of \(C_j \).
 - \(H_j(x) = \prod (x - \tilde{A}(n_jP_t)) + K_j \)
 - Step 2: \(C_i \) use \(n_i \) to compute \(H_j(\tilde{A}(n_iP_j)) \).
 - \(H_j(\tilde{A}(n_iP_j)) = \prod_{C_j \leq C_i} (\tilde{A}(n_iP_j) - \tilde{A}(n_jP_t)) + K_j \)

\[
\begin{align*}
&= \{((\tilde{A}(n_iP_j) - \tilde{A}(n_jP_t)) \times \prod_{C_j \leq C_i, C_i \neq C_i} (\tilde{A}(n_iP_j) - \tilde{A}(n_jP_t))) + K_j \\
&= \{((\tilde{A}(n_iP_jG - \tilde{A}(n_jP_jG)) \times \prod_{C_j \leq C_i, C_i \neq C_i} (\tilde{A}(n_iP_j) - \tilde{A}(n_jP_t))) + K_j \\
&= K_j
\end{align*}
\]
Key derivation algorithm (3/4)

Example of Fig 1:

- $H_1(x) = \text{nil}$, which means that no other class has access to C_1.
- $H_2(x) = (x - \tilde{A}(n_2P_1)) + K_2$
- $H_3(x) = (x - \tilde{A}(n_3P_1)) + K_3$
- $H_4(x) = (x - \tilde{A}(n_4P_1)) + K_4$
- $H_5(x) = (x - \tilde{A}(n_5P_1))(x - \tilde{A}(n_5P_2)) + K_5$
- $H_6(x) = (x - \tilde{A}(n_6P_1))(x - \tilde{A}(n_6P_2))(x - \tilde{A}(n_6P_3))$
 \[\times (x - \tilde{A}(n_6P_4)) + K_6\]
- $H_7(x) = (x - \tilde{A}(n_7P_1))(x - \tilde{A}(n_7P_4)) + K_7$
Key derivation algorithm (4/4)

Example: If \(C_1 \) wants derived \(K_4 \) from \(C_4 \).

Step 1: \(C_1 \) have \(H_4(x) \) and \(P_4 \) of \(C_4 \).

\[H_4(x) = (x - \tilde{A}(n_4P_1)) + K_4 \]

Step 2: \(C_1 \) use \(n_1 \) to compute \(H_4(\tilde{A}(n_1P_4)) \).

\[H_4(\tilde{A}(n_1P_4)) = (\tilde{A}(n_1P_4) - \tilde{A}(n_4P_1)) + K_4 \]

\[= (\tilde{A}(n_1n_4G) - \tilde{A}(n_4n_1G)) + K_4 = K_4 \]
Example of adding and deleting a class

1. If a class adding to the hierarchy:
 - Let C_8 be added as in immediate successor of C_4.
 - Step 1: C_8 selects its own secret key K_8 and secret parameter n_8.
 - Step 2: Makes $P_8 = (n_8G)$ public, and sends CA \{kG, (K_8, n_8) + kP_{CA}\}.
 - Step 3: CA will generates $H_8(x)$.

2. If a class removed to the hierarchy:
 - Example by C_j:
 - Just only delete K_j, n_j and P_j.
Conclusion

- This scheme ensures that the collaboration of a group of users is unable to reveal their predecessor’s secret key.

- Similarly, unable to generate their sibling’s secret key.

- It is flexible on the key selection, since any security class is able to select its own secret key K for its own convenience, and able to change its secret key from K to K' for some security reason.
行政工作

- 帳款整理
 - 國科會結帳