Frame Synchronization of OFDM Systems in Frequency Selective Fading Channels

潘建宏
陈其瑩
Fractional Frequency Offset Estimation

\[c_i = \tilde{s}^*(t_i) \cdot \tilde{s}(t_i + T_u) \]
\[= |A(t_i)|^2 \cdot \{ e^{-j2\pi\Delta f t_i} \cdot e^{j2\pi\Delta f \cdot (t_i+T_u)} \} \]
\[= |A(t_i)|^2 \cdot e^{j2\pi\Delta f T_u} \]

where

\[C_i : \text{correlation value} \]
\[\Delta f : \text{frequency offset in system} \]
Block Diagram Transceiver

Input Data
- Frequency Interleaving
- QPSK Mapping
- IFFT (Tx)
- FFT (Rx)
- Add Cyclic Extension
- DAC
- RF (Tx)

Output Data
- Frequency Deinterleaving
- QPSK Demapping
- Remove Cyclic Extension
- Timing and Frequency Synchronization
- ADC
- RF (Rx)
Fractional Frequency Offset Estimation

• Frequency Estimation :

 – Fractional part :

 \[s(t_i) = \text{Re}\{A(t_i)e^{j2\pi(f_c + \Delta f)t_i}\} \]
 \[= \text{Re}\{\tilde{s}(t_i)e^{j2\pi f_i t_i}\} \quad (1) \]

 \[\tilde{s}(t_i) \approx A(t_i)e^{j2\pi f_i t_i} \quad (2) \]

 where

 \[\tilde{S}(t_i) : \text{received data} \]

 \[t_i : i \text{th sub-carrier duration} \]
Fractional Frequency Offset Estimation

\[\tilde{s}(t_i + T_u) = A(t_i + T_u) \cdot e^{j2\pi f_{\Delta}(t_i + T_u)} \]

\[= A(t_i) \cdot e^{j2\pi f_{\Delta}(t_i + T_u)} \]

where

\(A(t_i) \): transmitted data

\(\tilde{S} \): received data

\(T_u \): useful symbol time
Outline

• Introduction
 – Block Diagram Transceiver

• System model

• Simulation results
 – Gaussian
 – Rayleigh

• Code composer studio
 – Gaussian
 – Rayleigh

• Conclusion

• Reference
Fractional Frequency Offset Estimation

\[C = \sum_{i=1}^{N} c_i = \sum_{i=1}^{N} |A(t_i)|^2 \cdot e^{j2\pi\Delta f T_u} \]

\[= C_I + jC_Q = |C| \cdot e^{j2\pi\Delta f T_u} \quad (5) \]

\[\Delta \tilde{f} = \frac{1}{2\pi T_u} \cdot \tan^{-1} \frac{C_Q}{C_I} \quad (6) \]

where

\[C_I : \text{Real part of correlation value} \]
\[C_Q : \text{Image part of correlation value} \]
\[\Delta \tilde{f} : \text{estimated frequency offset} \]
Fractional Frequency Offset Estimation:

\[\tilde{s}(t_i) \rightarrow A \rightarrow X \rightarrow D \rightarrow \text{Frequency Offset} \rightarrow E \rightarrow \text{Fraction part} \]

\[\tilde{s}^*(t_i + T_u) \rightarrow B \rightarrow \text{complex conjugate} \rightarrow C \rightarrow \text{Frequency Offset} \]

where

\[S(t_i)^*: i-th \text{ symbol time of conjugated signal} \]
Criterion of the simulation

\[
\text{mean error} = \frac{1}{N} \sum_{n=0}^{N-1} (\Delta f - \Delta f')
\]

where

\(\Delta f\): frequency offset in system

\(\Delta f'\): estimated frequency offset
Criterion of the simulation

\[\text{mean square error} = \frac{1}{N} \sum_{n=0}^{N-1} (\Delta f - \tilde{\Delta f})^2 \]

where

\[\Delta f : \text{frequency offset in system} \]

\[\tilde{\Delta f} : \text{estimated frequency offset} \]
Gaussian Channel
Channel Impulse Response of Exponential Decaying Rayleigh Fading Channel

\[h_k = N\left(0, \frac{1}{2} \sigma_k^2\right) + jN\left(0, \frac{1}{2} \sigma_k^2\right) \]
Simulation Results

![Graph showing frequency estimation vs SNR in dB]
Simulation Results

![Graph showing frequency estimation and mean square error vs SNR in dB.]
Simulation Results

![Graph showing BER vs SNR with frequency estimation. The graph has two lines: one for differential and one for guard. The BER decreases as SNR increases.]
Simulation Results (CCS)

Gaussian
Simulation Results (CCS)

Rayleigh
Conclusion

• Simulation analysis
 – mean square error
 • Variance
 – Bit Error Rate
 • Accuracy data in receiver

• Algorithm analysis
 – Fractional Frequency Offset Estimation vs Maximum likelihood (ML) theory
 • Advantage
 – Easy to implementation
 • Disadvantage
 – Fractional frequency offset estimation cannot achieve accuracy of the frequency estimation than ML theory
Reference