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Abstract

In this paper, we establish L>° and LP estimates for solutions of some polyharmonic elliptic equations
via the Morse index. As far as we know, it seems to be the first time that such explicit estimates are
obtained for polyharmonic problems.
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1. Introduction

Consider the following polyharmonic equations (Py) :(—=A)*u = f(x,u) in  with the Dirichlet
boundary conditions

ou oF 1l
or the Navier boundary conditions
u=Au=...=A""u=0 on 9Q. (1.2)

Here Q@ C RY (N > 2k) is a bounded domain with smooth boundary and f is a C*(Q2 x R) function that
we will specify later. Define

M@= [[IDFOP = fne? tor o€ %y (13)
where -
k VA= for k odd;
D" = .
Az for k even
and
HE(Q) if we work with (1.1);
Bk = {qﬁ cHQ),p=Ap=..= A% =0 on GQ} if we work with (1.2).

The Morse index of a classical solution u of (Px), denoted by i(u) is defined as the maximal dimension
of all subspaces of ¥, such that A,(¢) < 0in X\ {0}. We say that u is stable if its Morse index is equal
to zero. Our aim here is to get some explicit estimates of u using its Morse index i(u).

We begin by presenting some assumptions on the nonlinearity f:

(Hy) (superlinearity) There exists p > 0 such that

f(z,5)s* > (14 p)f(x,s)s >0, for|s| >sg, =€ Q.
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(H3) (subcritical growth) There exists 0 < 6 < 1 such that

2N
N -2k

F(x,s) > (1+0)f(x,s)s, for|s|> sy, ©€Q,

where F(z,s) = /tf(ac, t)dt.
(H3) There is a constanot C > 0 such that
|V F(x,8) < C(F(x,s)+1), x€Q.
We say that f satisfies (H;) in Ry, if we have the assumption (H;) only for s large enough.

For the second order case, i.e. k = 1, Bahri and Lions obtained in [1] the estimates of solutions in
H}(Q) for superlinear and subcritical growth f, by using the blow-up technique and the Morse index of
the solutions. Motivated by [1], based on some local interior estimates and careful boundary estimates,
Yang obtained in [5] the first explicit estimates of L? or L> norm for solutions to (P;) via the Morse
index. More precisely, Yang proved that

Theorem A. Let f satisfy (H1)-(Hs), then there exist positive constant C, o and B such that any
u € C?(Q) N C(NQ), solution of (P1) satisfies

/Q (@) Pde < Cliw) + 1), Jlulpemy < Cli(u) + 1),

where

=1
Po + SR

(1+60)(N —2) (3, 3 \(2+p?
a( " )3u+u2

(1—0)N +2(1+6)

and

jo_ 2a [ 2 1 } -
poN(@2—=po) [N(2—po) po] =
Hajlaoui, Harrabi and Mtiri revised in [3] the results of [5], they obtained similar L>°-estimate for solution

to (P1). The proof in [3] is more transparent, and it allows them to get a slightly better estimate for
large dimension N :

Theorem B. Let f satisfy (Hy)-(Hs), then there exist positive constant C, o and B’ such that any
classical solution u of (Py) satisfies

[ IVufde < Clitw + D, Jullie < Clitw) + 1)
Q

where

Butd 3N%(1—0)+ N(70 — 4) — 20 + 12
3u0 N(N —2)? '
In this paper, we will try to handle the polyharmonic equations. Let
(~A)u= f(r,u) in
(Ey) u satisfies (1.1),  if k is odd;
u satisfies (1.2),  if k is even.

4
o ==+3 and B =
m

To simplify the presentation, we will concentrate on the cases k = 2 and k = 3, even we believe that the
results should hold true for general £k € N. We will provide some LP and L* estimates in polynomial
growth function of the Morse index, for classical solutions of (E3) and (E3), provided suitable conditions
on f. As far as we know, it seems to be the first time that some explicit estimates are obtained for
polyharmonic problems via the Morse index.

As in [3], we shall employ a cut-off function with compact support to derive a variant of the Pohozaev
identity. This device allows us to avoid the spherical integrals raised in [5], which are very difficult to
control, especially for the polyharmonic situations. Furthermore, under (Hy)-(Hz), the local L?-estimate
of Vu and Aw via the Morse index seem also difficult to derive for the polyharmonic equation than for
(Py) the second order case. As in [3], we need to exhibit the explicit dependence on i(u) (see Lemma 2.3
and lemma 3.3 below). The following are our main results.
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Theorem 1.1. If u is a classical solution of (Eq) with f > 0 satisfying (H1)-(Hs) in Ry; or if u is a
classical solution of (Es) with f satisfying (H1)-(Hs), then there exists a positive constant C independent
of w such that

[ 1wl < i) + 1
Q
where
2N J Ak(p+1)
= and o = ———=
PE= N1 —0) + 2k(1 + 0) b
By setting up a standard boot-strap iteration, as f has subcritical growth, we can proceed similarly as

in the proof of Theorem 2.2 in [5] and claim that

Theorem 1.2. If u is a classical solution of (Es) with f > 0 satisfying (H1)-(Hs) in Ry; or if u is a
classical solution of (Es) with f satisfying (H1)-(Hs), then there exists a positive constant C independent
of u such that (for k =2 or 3 respectively),

where k = 2 or 3 respectively.

HUHLOC(Q) < C(i(u) + 1)ﬁ’€, where [, =

3

2k { 2k 1 }1 Ak(p+1)
= L ap=— 17
N —p) INC=p1) ' "
and py, is defined in Theorem 1.1.

By assumptions (H;) and (Hz) in R (resp. in R4 ), there exist two positive constants Cy and Cy such
that for |s| large enough (resp. for s large enough),

2L ars)s — € < Flavs) < ()5 + Co, (14)
F,s)s > Cr(lsPHe — 1) (1.5)

and
f(2,8)] < Co (|3|7N‘<1§f;t?<’i(i$f” n 1) . (1.6)

This paper is organized as follows : We give the proof of Theorem 1.1 for £ = 2 and k& = 3 respectively
in sections 2 and 3. In the following, C' denotes always a generic positive constant independent of the
solution u, even their value could be changed from one line to another one.

2. Proof for k = 2

Here we will prove Theorem 1.1 for k = 2.

2.1. Preliminaries
Let y € RY and R > 0. Throughout the paper, we denote by Br(y) the open ball of center y and
radius R and 0Qg(y) := 02N Br(y). For x € Br(y) NQ, let n:= 2 — y. We denote also
0*u

ale ax]é T axjk

Wgs-jp, +

First of all, we have the following Pohozaev identity.

Lemma 2.1. Let u be a classical solution to (Es). Let 1 € C2(Bgr(y)). Then

2N 2
— [ F(z,u 1/)dx+—/VIF T,u ~m/)d:c—/ Au)*opdx
N1/, (z,u) N_1J, (z,u) Q( )
_ 2 o . 2
= -~ ~N_1 /Q AuV-u(Vip,n)dx + N4 Q(V@Z) n)(Au) dx

4 2

2 0Au

=
-— F:E,uV1/)~ndzf—/ — (Vu - n)do.
A N =4 Joau) o ! !
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The proof is classical by multiplying the equation by (n - Vu)y and integration by parts, so we omit it.

To establish a global estimate, we will cover the domain €2 by small balls and obtain local estimates.
To be more precise, consider

R R
O p= {zGQ: dist(z, 0Q) > 5} and Qg g = {xGQ: dist(z, 00Q) < g}, VR>0.

The main difficulty is the estimates of u near the boundary, that is, in {22 r. We need to choose carefully
the balls as in [5]. Indeed, we will take balls with center lying in

R
I'(R) := {x € RM\Q : dist(z,00) = 2—0} ; (2.1)
The domain Q\Qy r will be covered by balls with center lying in €y z. The following lemma is devoted
to the control of the boundary term for y € I'(R) in the above Pohozaev identity.

Lemma 2.2. There exists Ry > 0 depending on 2 such that if f(x,u) > 0 and u is a classical solution
of (Es), then for any 0 < R < Ry and y € T'(R), there holds

/ 04u (Vu - n)do > 0,
o0n(y)

for any nonnegative function 1 € C?(Bgr(y)).
Proof. As in the proof of Lemma 2.2 of [5], there exists R; > 0 such that if 0 < R < Ry and y € T'(R)

then v-n <0 for any x € IQg(y).

As f(z,u) > 0, the maximum principle implies that —Au > 0 in  as Au = 0 on 9, hence u > 0.
Therefore % >0ondQand Vu-n=(n- v)% > 0 on 012, so we obtain the claim. O

Consequently, we get
Proposition 2.1. There exists Ry > 0 small who satisfies the following property: Let u be a classical

solution of (E2) with f > 0 wverifying (H1)-(Hs) in Ry. Then for any 0 < R < Ry, y € TI'(R) and
0 < € CX(Br(y)), there holds

/f(x,u)uwdx—l—/(Au)Qz/Jdac
Q Q
< CR|VU [

Apr,y(y)

[z, w)ude + CRQ/A " |V2(uVy)|[*da 22)
R,y \Y .

+ C(1+ RIVEloe ) 180032, () + C(RIVAB)IE + 18612 ) 132t 00

1
+ O (1801, + 5 IVBI% + V2012 ) IVl ) + O,

where
Ary(y) = Bry) NQN{Vi # 0}
Moreover, for y € Qi g, the above inequality holds true if we replace R by %

Proof. Let y € I'(R) with R < Ry and 0 < ¢ € C#(Bg(y)). Using Lemmas 2.1-2.2, (H;)-(Hs3) and
(1.4), we obtain

(140) /Q [z, w)updx — /Q(Au)dex

4 / 1
< Aul|V>u(Ve, mlde + —— / (AP |Ve - nlda
N —4 AR,y (y) N—4 AR,y (Y)

4

2
+ —/ |[Au||Vu - Vip|dz + —/ |Au||Vu - n||Ap|dx
N =4 Januw N =4 Januw)

1

Jri/ f(x,u)u|V1/}~n|dz+CR/ f(z,u)updr + CRN.
(N =4) Jap,o) Br(y)n0



A direct calculation implies that
V2u(Vip,n) = Z Uijhing = Z(uwi)”n] —uV(AY) -n — Ap(Vu - n) — V2(Vu,n).
ij ij
By the Cauchy-Schwarz inequality, there exists C' > 0 such that

|Auldz + CR? / 2|V (A)[2dz

/ |Au||V2u(Vip,n)|dz < C
AR,y () Ar,v ()

AR,y (y)

+ CR? / |V2(uV)|[*da (2.4)
AR,y ()

ver [ v (Al + VPl )da,
AR, ()

On the other hand, recall that u = Au = 0 on 9Q and ¢ € C*(Bg(y)), multiplying the equation (Fy) by
uy and integrating by parts, we get readily

/(Au)%/}d:c - / flz, v)updr < C/ | Al [|Vu V| + |U||A1/)|}d:c

@ @ AR, (y) 25)

< C/ {(Au)2 +|Vu - VY |> + (A1/))2u2:| dx.
AR, (Y)

Remark that

Q/Q(Au)%dﬁg/gf(z,u)m/;dz: (1+9)/Qf(z,u)uwdz*/ﬂ(AU)21/)d$

2
+ <1 + g) M(Au)%dz /Qf(x,u)m/}dx} .

Fix Ry € (0, Ry) such that CRy < 1. Combining (2.3)-(2.5), using again Cauchy-Schwarz inequality,
there holds clearly (2.2). The proof for y € ; g is completely similar , so we omit it. O

Remark 2.1. The key point in (2.2) is that the integral over the ball Br(y) NQ is now controlled by the
integrals over the annuli type domain Ag y(y) when we work with suitable cut-off function .

Let R> 0,y € Q1 rUT(R), 0 < a < b. Denote

. b—
A=A = (@ eRV; a< |z —y|<b}, A,:=A" for o<p<T“. (%)

We will use also the following classical estimates.

Lemma 2.3. There exists a constant C > 0 depending only on N such that for any u € H*(Q) N HL(Q)
and 0 < p < min(1, 252), we have

1
190l ey < C (;nun%z(m) n ||Au|%2<m>) |

Remark 2.2. If f satisfies (Hy), using (1.5), there holds

pEm
HUH%Z(AQQ) <C ( f(z,u)ud:c) +C.

ANQ

2.2. Estimation via Morse index
Let u be a solution to (E2) with f > 0 and finite Morse index i(u). For y € I'(R) U €4 g, denote

2(j +i(w))
4(i(u) + 1)

; . 2(5 +i(u)) +1
A] = Abj, Wlth aj = R, bJ = m

aj

R, 1<j<i(u)+1. (2.6)



Fix a cut-off function ® € C*°(R) such that ® =1 in [0,1] and supp(®) C (-3, 3). Let

¢j(z) =@ <4(i(u) +R1)|z —ul_ 2j — 2i(U)) .

Then for any 1 < j <i(u) + 1, ¢; € C°(Bgr(y)),

%(1 +i(u))?. (2.7)

C
G(@) = 1in Ay, [Vollee < S0 +i(w) and gl < -

We prove the following lemma.

Lemma 2.4. Let f satisfy (H1) and let u be a smooth solution to (E2) with Morse index i(u) < oo.
Then for any 0 < R < Ry, y € T'(R) Uy g, there exists jo € {1,2,...,1+i(u)} verifying

4p+8

(Au)2dz + Flawpuds < ¢ (2200 7 (2.8)
AjyNQ AjyNQ R

Proof. First, for € € (0,1) and n € C*(RY),

/ [A(un)]?dx = / (AN + 2VuVn + nAu)’ da
Q Q
€ 2,2 ¢ 2 2 ¢ 2 2
< (14 (Au)*ndzr + u?(An)*dz + |Vu|?|Vn|“dz.
2/ Ja € Jo € Ja
Using A(u?) = 2|Vu|? + 2uAu, there holds
1
/ |Vu|?|Vn|?de < 5/ w? A(|Vn)?)dz +/ u|| Au||Vn|*da. (2.9)
Q Q Q
Take n = ¢™ with m > 2, ( > 0 and apply Young’s inequality, we get
[ ullaulivenpas = m [ jullaulToPen-ds
Q Q (2.10)
<é / (Au)?¢*™mdx + Ce / u?| V¢ .
Q Q
Here C p, denotes a constant depending only on € and m. Therefore
[ 1@ Pds < (e+1) [ (QupPcmda + Com [ a2 [JAGE +19¢]" + (V)¢ o (211)
Q Q Q
Consider now the family of functions {uqb?}lgjgi(u)ﬂ, m > 2. With the definition of ¢;, it’s easy
to see that different ¢; are supported by disjoint sets for different j, so they are linearly independent as

u > 0 in Q. Therefore, there must exist jo € {1,2,...,1+i(u)} such that A,(u¢},) > 0 where A is the
quadratic form given by (1.3). Combining A, (u¢}) > 0 with (2.7) and (2.11), we obtain

/f T,u)u ¢2md:c -1+ e)/(Au) ¢2mdz < —(1+i(u / ¢?(T74dz. (2.12)
Q
Moreover, multiply the equation (Es) by un? and integrate by parts, we get, using (2.9)
[ [aw2e? - o wyurp]as
Q
= — 4/ nAuVu - Vndz — 2/ nuAuAndz — 2/ uAu|Vn|?dz
Q Q Q
< e/(Au)2n2d$+C€/ u2(A77)2d$+C€/ |Vu|2|V77|2dac—2/ uAu|Vn|?dz
Q Q Q Q

< e/(Au)2772dx + ce/ w2 [(An)? + A (V0] da + ce/ [uAu| [V da.
Q Q Q



Take now n = ¢ with m =2+ % > 2, there holds as for (2.10),

[ reaalvai < [ (@Quperds s c. [ @6 w0, s

By (2.7), we deduce then

(1— ze)/( 292" da — / [z, w)yugide < _(1 +i(u))* /u%?g”*‘*dx. (2.13)

Q

Let € < %, multiplying (2.13) by 1£2¢, using (2.12) and (H;), we get

1—2¢
e/(Au)Qqﬁ%”dx—l— (u
Q

there holds

)/f z, u) g dr < %(1+i(u))4/u2¢jg”_4d$+06.
Q

Fix now € < min(2, f5),

/( 2mdx+/ [z, u)ugde < E(1 +i(u))4/ > dr + C.
Q R4 Q Jo

Therefore, using (1.5) and R < Ry, for any ¢’ > 0,

_ apts
Jowrsiran s [ui@asira <o (FRH) T voe e
)
L auts
< Co ( +Rf(u)> +C€’/ f(z,u)u¢§T_2)(“+2)dz
Q

4p+8

:Ce,(l—’—é(u))T—i—Ce/fxuu¢2mdx

For the last line, we used (m — 2)(u+2) = 2m. Take ¢ > 0 small enough, the estimate (2.8) is proved. O

2.8. Proof of Theorem 1.1 completed

Now, we are in position to prove Theorem 1.1 for k£ = 2. Fix

R o
R:RO, p = W, AJUP 7Aa0+p CA be as in (*)

According to Lemmas 2.3, 2.4 and Remark 2.2, there exists a positive constant C' independent of y €
T'(R) Uy g such that

4p+8

1A, nay + IVulEea, gy < O+ i)™ (2.14)
Here, a;, and bj, are defined in (2.6) with jo given by Lemma 2.4.
Consider a cut-off function &;, € C2(By,, —,(y)) verifying &, (z) =1 in By, 1,(y), with
C , C .
IV&islloo < ZA+iw),  1AGs lloo < 51 +i(w)*,
Applying Proposition 2.1 with ¢ = §;,, as Ar.¢(y) C Aj,,, N, we get
/ flz, w)ugj,dx + / (Au)?¢j, dx
Q Q
; 2 2 (2 (2.15)
< C’(1+z(u))/ [(Aw) +f(x,u)u}dz+0/ V2 (uVE;,) | de
Ajo.pN8 Ajo.pN8

+ O +i(w)°llullZaa,, ,ne) + CA+ i) VulZaa, o) +CRY.
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Since uV¢j, = 0 on 91, by standard elliptic theory, there exists Co > 0 depending only on € such that
[ I @ve, )i < ca [ A@ve,)Pdr
Q Q

~ o /A AV, )Pda (2.16)

jo,pmQ

<o (WU + IVuPIVi P+ (8T da.
Ajo,pﬁﬂ
From (2.15), (2.16), we get the following inequality
/ flz, u)ugj,dr + / (Au)?¢j, dx
Q Q
< C(1 +z(u))/

R [(Au)2 + f(z, u)u] dz + C(1+i(u)? | Aul3aia, no) (2.17)

+ O+ i) llullZaa,, ,ne) + CA+ i) IVulZaia, o) +CRY.

On the other hand, using Remark 2.2 and Lemma 2.4, there holds

2+p
HUH%Z(A].UQQ) <C </A . f(x,u)udac) +C<C@ —l—z(u))% (2.18)

Combining (2.8), (2.14), (2.17) and (2.18), one obtains

8u+8

/ f(x,u)ufjodz+/(Au)2§jod:c <C(l+i(u)) *»
Q Q

As & < aj, and R = Ry, we get then for any y € I'(R) U Q4 g,

8u+8

/ [|Au|2 + f(x,u)u} dz < C(1 +i(u)) ™"
Bm(y)ﬁfl

By covering argument and (1.6), we get finally

/ [z, u)P?de < C/ fw)ude +C < C(1 +i(u))*?,
Q Q

2NV and ay = 8tl) gy we are done. O

where p2 = Fr=p) fa070) n

3. Proof of Theorem 1.1 for £k = 3

In this section, we consider the equation (Fs3). We will proceed as for (F>) and keep the same
notations, but we replace the Navier boundary conditions by the Dirichlet boundary conditions and we
have no more the sign condition for f.

3.1. Preliminaries
We make some preparations here. For ¢y € C™ for m > 1, to simplify the notation, we define

[¢]m () = > 1105 0()

[B1]+...+]Bpl=m,|Bi|>1 i=1
and the semi-norms
P
|t lm,c0 = > 11V ellac, ¥ m > 1.
ar+...+ap=m,a; >1i=1

Obviously, for any ¢ € C™, we have ||[¥]m|lcc < Cin|¥)|m,oo-
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Lemma 3.1. Let m > 3. For any € > 0, there exists Ce,, > 0 such that for any u € H3(Q) and
¢ € C%(Q), there holds

[ l@w?venp 4 [wupivien s < e [ [vawpernds+C [ et @)
Q Q Q
Proof. Using the equality A(u?) = 2uAu + 2|Vu|?, we have

_ 1 m— m—
/Q|w|2|vg|4g2m dx < §/Qu2A(|V§|4C2 ) dx-l—/Q|u||Au||V§|4C2 4da.

Applying Young’s inequality, we get, for any € > 0

/|UAU||V<|4§2m74dSC§€/(AU)2|V§|2<2m72dﬂC+CE/ u2|v§|6<2m76d:€.
Q Q Q

So we get

/ |Vu|?| V¢ P 4dr < e/ (Au)? |V 2dx + Cﬁ/ u?[¢)6C*™ S du. (3.2)
Q Q Q
On the other hand, direct integrations by parts yield (recall that u € H3(f2))

/(Au)2|V77|2d:c: f/ VUV(AU)|V7]|2d1'72/ AuV?n(Vn, Vu)dz
Q

/ VuV (Au)|Vn dz+2/ uV3n(Vn, V(Au))dz

+2 /uAu|V277|2dx+2/uAan~V(An)dz

A
AR

V(Au)|Vn)| dz+2/ uV3n(Vn, V(Au))dzx
— 2|Vul } V22 da + Q/QUAUVU -V (An)dx
Hence
/ (82| + 21V uP |22 dz = / VuV(Au) |V 2de + 2 / WV (Vn, V(Au))de
Q Q Q (3.3)
+/Qu2A(|V277|2)dac + Q/QuAan -V(An)dz
Consider n = (™. For any € > 0, by Cauchy-Schwarz inequality, we have
— /Q VuV (Au)|Vn2ds + 2/qu2n(vn, V(Au))dx
< e/Q |V (Au)|?¢*™dx + CE/Q |Vul|? V¢ ¢ e + C. /Q u?[¢]6¢*™ O dx
and
Q/QUAUVU-V(An)dx < e/Q |Au|2|V§m|2dx+CE/Qu2[C]6§2m_6dx.
Inserting the two above estimates in (3.3), one gets
(=0 [ @upIverfas+ [ [Vupivicn s

SG/ |V(AU)|2C2md$+Ce/ |Vu|2|VC|4C2m_4dx+C€/ w?[(]6¢2m 8 dx.
Q Q O
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Take another small enough € in (3.2), there holds
(1 —2¢) / (Au)?| V(™2 dx Jr/ |Vu|?| V(™ Pdr < e/ |V (Au)|?¢*™dx + C’E/ u?[¢)6C*™ O du.
Q Q Q Q

The proof is completed. O
Using Lemma 3.1, we obtain also

Lemma 3.2. Let m > 3. For any 0 < e < 1, there exists Cc > 0 such that for any u € H3(Q) and
¢eC%Q),

/Q [VuP(AC™)” + [V2u’| V¢ 2| dar < e /Q |V (Au)[*¢*" dx + C. /Q u?[(Je¢*" da.
Proof. From (2.9), we obtain
[ IR uver i < 5 [ [P AGTCTEde +m [ Vu- (aw)ITeEEn -2
< /Q [Vul? [Cﬁ|v<l442m*4 + VC’”V(A(’”)} da + /Q Vul?| V2" Pde (3.4)
+6/9|V(Au)|2§2mdz.
Rewrite

CelVE|' =1 4 VEmV(AC™) = VG- w

with a smooth function ¥. In the spirit of (2.9), we have
/Q |Vu|>’¢P™ =4V ¢ - Wda < %/QUQA@?W—‘*V( ) dx + /Q lu||Au|¢*™ V¢ - Wda
< [ i@ty i cqupen-oldn e [ @aupvepen-is (5)
< Cﬁ/glu2[g]6§2m_6d$—l—e/Q(Au)2|VCm|2dac.
Combining (3.1) and (3.4)-(3.5), there holds

/|V2u|2|VCm|2dx§e/ |V(Au)|2g2mdx+06/ u?[¢)6¢*™ Cdu.
Q Q Q
Furthermore, integrating by parts,
/|vu|2(A<m)2d:c: 72/V2u(Vu,V§m)A§mdzf/ |Vu*V(AC™) V(™ dx
Q Q Q
1
< —/ |Vu|2(A§m)2d:c+C/ |V2ul?|V¢™ P da
2 Ja Q
1
+§/u2A[V(A§m)V4m}dz+/ Ju| | Au|V (AC™) V¢ d.
Q Q
We deduce that

[ vuracmias <c [ [[PuPven 4 aaPvenlds + [ i -Cda,
Q Q

u
Q
so using the previous estimates, we are done. O
Let R >0,y € rUT(R),0<a<b Denote A:=Ab and A, := AZ;’;, similar to Lemma 2.3, we
have

Lemma 3.3. There exists a constant C' > 0 depending only on N such that for any v € HZ(Q) and
0 < p < min(1, 252), we have

1
1AuZ0s ey < C (;mz(m) " ||v<Au>||%2<m>> |
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3.2. Explicit estimate via Morse index

Lemma 3.4. Let f satisfies (Hy) and u be a solution to (E3) with finite Morse index i(u). Then for any
y € T(R)UQq g with R > 0, there exists jo € {1,2,...,1+i(u)} such that

6u+12
1+ #
/ IV (Aw)da +/ @, uyude < C (L(“))
AjyNQ AjyNQ R

Proof. Take n € C%(2). By direct calculations, we get, as u € H3 (1),

/Q [V(A(un)]*dx = /Q (V(Au)n + AuVn + 2V2uVn + VuAn + 2VuV?n + uV(An))2
<(1+ e)/ |V (Au)|*n?dx
Q
+Co [ [18uP? + (V2P + [Val? (V20 + 1802 + 7V (AP do
Q

Using Lemmas 3.1-3.2, let n = (™ with m = 3 + % > 3, we derive that

um 2:1; € U22m.’1] ; U2 2m—6 .
/Q|V<A< ™) 2dz < (1 + >/Q|V<A JPeemd +c/Q (eC>™5d

As in section 2, we can easily check that {ugb}”}lgjgi(u)ﬂ are linearly independent, so there exists
Jo € {1,2,...;1+i(u)} such that A,(u¢]’) > 0. The above estimate with ¢ = ¢;, implies then

[ r@uedris - o [ [w@npard < grari) [ et (30

Now, take wa;" as the test function for (Ej3), the integration by parts yields that

/ IV (Au) ¢35 da —/ fla,u)ugide = [ V(Au) - [V (A(ugi™)) — V(Au)qﬁQm} dx.

Q

Developing the right hand side, applying again Lemmas 3.1-3.2, we can conclude: For any e > 0, there
exists C. such that

(I—¢) /|V (Au)| ¢2mdzf/ [z, u)ugide < g—(lJrZ( )° /U2¢%ni6dz. (3.7)

Q

Multiplying (3.7) by +£2¢ adding it with (3.6), we obtain from (H;) that

—€

/|V (Au)| ¢2mdx+ (u—)/fz uud)dezSﬁ(lnL i(u))® /QUQ‘b?;n_Esd:chC’.

F1x0<e<§_’i—,weget

/ |V (Au)| ¢2md$+/ [z, u)ug?de < %(1 —l—i(u))G/ u2q§§;"_6dx+0.
Q

By Young’s inequality, for any ¢ > 0, there holds

6u+12
141 E m—
IV(Au)| ¢2mdz+/ uf(x,u)(b%ndeCe/( +};(U)> +6// |u|“+2¢§0 3)(u+2) ..
Q Q Q
. 6pt12
< Co (1 +é(u)> / fz,u) ud)dez

We used (1.5) and (m — 3)(2 + p) = 2m for the last line. Take € small enough, the claim follows. O
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3.83. Proof of Theorem 1.1 for k=3
We show firstly the Pohozaev identity for (Es).

Lemma 3.5. Let u be solution to (E3). Let v € CX(Br(y)). Then
N -6

N/QF(x,u)wdx—l—/QVzF(w,u)-mﬁdw— T/QIV(Au)Idew

L 2V - n)de — z,u) VY - ndx
:§/Q|V(Au)| (Vip - n)d /QF(’ )V - nd

- / APV (AW (- Vu)de — 2 / V(AU)V{VQu(n,Vz/J)—i—Vuvw}dx
Q Q

0Au 1 20 mVirdo
Jr/a (V(Au) - n)pdo — §/BQR(y)|V(Au)| (v - n)do.

Qr(y) v

For the boundary terms, we have

Lemma 3.6. There exists Ry > 0 depending only on Q such that for any u smooth function in H3(Q),
any 0 < R < Ry, y € T'(R) and any nonnegative function 1, there holds

/ 02U G(Au) - o — - / IV(Au)[2v - nipdo < 0.
on(y) 09 (y)

2

Proof. Take R; > 0 such that v-n < 0 on 9Qg(y) for any 0 < R < Ry and y € T'(R). As u € H3(Q),
we know that V(Aw) is parallel to v on 09, in other words V(Au)(z) = A(z)v(z) on I. Therefore

a(;‘yu(V(Au) ‘n) — %(u -n)|V(Au)|? = /\?(V 'n) <0, VaedQr(y).

So we are done. O

Similar to Proposition 2.1, we can claim

Proposition 3.1. There exists Ry > 0 small who satisfies the following property: Let u be a classical
solution of (E3) with f verifying (Hy)-(Hs). Then for any 0 < R < Ry, y € I'(R) and ( € C%(Br(y))
verifying 0 < ¢ < 1 and ¥ = (2™ with m > 3, there holds

[ s+ [ 90 Puds

Q Q

< CRI¥C [
Ar,y ()

+ CRKCl6,00 [ Vull3 2 () + C (€500 + B2Cls.00 ) 1l (-

Proof. Using Lemmas 3.5- 3.6, (H;)—(Hs) and by (1.4), we obtain

¥ {(1+9)/Qf(z,u)u1/)dz/Q|V(Au)|21/)dz]

f,wyude + C(1+ RIVC oo + BCh ) V(A0 Baay iy (3D)

< CR||VY|os /

AR,v ()
g/
AR, (y)

We will use also the following lemma.

|V (Aw)|?dz + CR/Q [z, w)updx + CR||V¢||OO/A f(z,u)udx (3.9)

R,y (Y)

dx + CRN.

V(Au)v[v2u(n,w> + vuw} ‘der /Q ‘Aq/}V(Au)V(n V)

Lemma 3.7. For any R < 1, ¢ = ¢*™ with { € CS(Bgr(y)) in Proposition 3.1, there exists a positive
constant C' such that

/ ‘V(Au)v[v%(n,w) + Vuvy] ‘dw +/ ‘AwV(Au)V(n : Vu)‘dx
AR,y (y) Q

<c IV (Aw)[2dz + 032/ V(AW 2[Clada (3.10)
Ar,y(y) AR,y (y)

L CR? / VuP(Clode + / o ([CJs + R2[()s) da.
AR,y (y) ARr,v(y)
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Proof. Indeed, in Br(y) N1,
|V(80)V [V2u(n, Vo) + Vuve) | < CRIV(AW)|(IV? (@V9)| + [V2ul[ 73] + [Vl [920] + ul [ V49

+ OV ()| (IV2ul|Ve] + [Vul 724,

We get then
/ V(80)V [V2u(n, Vi) + Vuve]|dr
AR,y (Y)
< c/ IV (A)|2dz + 032/ V3 (V) [2dz + 032/ V22| V20 2
AR,y (y) AR,y (y) AR,y (y)

+CR2/ |Vu|2|V3w|2d:z:+CR2/ u?| V4|2 dx
Ar,v () A

R, (Y)

+C/ |v2u|2|w;|2d:c+c/ [Vul?| V2| dz.
AR,y (y) Ar,y(Y)

First, using Lemmas 3.1-3.2 on Ag 4 (y) N €, the last two terms can be upper bounded by

C |V(Au)|?dx 4 C u?[¢)eda.
Ar,v(y) ARy (Y)

Moreover, as uVi) € H(£2), there exists C' > 0 depending only on ) such that

/ |V3(uVy)|2dx = / | V3 (uVe)|Pde < c/ IVA(uV)|?de = C IVA(uV)|*da.

AR, (y) Q Q AR,w(Y)

Remark that (as ¢ = ¢*™)
VA@YY)? < C(IV APV + V2| V252 + [Vul2 V3 +u? V)
< C(IV(2u) )z + [ Vul[Clo + u?[Cls) + CIV2ul2 V2 .

Using the equality 2|V?u|? = A(|Vu|?) — 2Vu - V(Au), we obtain

1
/ |V2u|?| V2 2dr < —/ |Vu|2A(|V21/J|2)d:c+/ |Vu - V(Au)|| V| dzx
AR,y (y) 2 Ry (Y AR,y (Y)

1
<5 [ IVuPIATePdseC [ V0P
AR (Y)

ARJP(y) (3.11)
+C |Vul?|VZ|*dz
AR, (y)

2 Al |
= /AR,w(y) Vel [C]deJrC/ |V (Au)|*[¢]2dx

AR,y (Y)

Combining all these inequalities, we obtain the estimate for the first left term in (3.10).

On the other hand,
/ ‘A’L/JV(AU)V(H : Vu)‘dx
Ar,v(y)
< [ V@wl[Rl|Av] + [Val Av|de
AR,v ()

< / |V(Au)|?dx + C’/ {R2|V2u|2|v2w|2 + |Vu|2(A1/))2}d:c.
AR,y (y) AR, (y
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Applying (3.11) and Lemma 3.2, the proof is completed. O
Coming back to the proof of (3.8) . Take u¢?>™ as the test function for (E3), using Lemmas 3.1-3.2,
for any € > 0 there exists C, such that

/|V(Au)|2§2mdx—/ f(x,u)uCdexge/ |V(Au)|242md$+06/u2[§]6c2m_6d9€. (3.12)
Q Q Q Q
Remark that

g/ﬂ|V(Au)|2wd$+g/ﬂf(x,u)uz/}dx:(1+9)/§lf($,u)u1/1dac—/ﬂ|V(Au)|21/1dac

4 <1+§> UQW(AU)PW;C/Qf(z,u)wdz].

Combining (3.9)-(3.10) and (3.12), for ¢, R > 0 small enough, we have (3.8). O

Proof of Theorem 1.1 for k£ = 3 completed.
Now, we are in position to prove Theorem 1.1 for £k =3 . Fix

6 R
R=R =34, pi=m——

Using Remark 2.2 and lemma 3.4, there holds

o b]‘ofp .
Ajo.p = Aaj0+p C Aj, be as in (x).

24+p
HUH%Z(A].UQQ) <C </A i, f(x,u)u) +C<C(+i(u)) . (3.13)

According to Lemmas 2.3, 3.3, 3.4 and (3.13), there exists a positive constant C' independent of y €
T'(R) Uy g such that

6p+12

IV(AW)I[T2(a,, 00 + IVUllTz(a,, 00 < CO+i(w) 5 (3.14)
Combining (3.8), (3.13) and (3.14), one obtains

124412

/ f(x,u)ufjodz+/(Au)2§jodz <C(l+i(u) =
Q Q

As & < aj, and R = Ry, we get then for any y € I'(R) U Q4 g,

/ 180 + f(a, uu|de < OO +i(u) ™5
B Ry (y)NQ

Rg
2
The proof is completed by the covering argument. 0
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