尚未登入 請由此登入
 
 
 










知識分享平台Eshare檢視資訊View
返回前一頁Back
      [檢舉]

標題Title: NORMALIZED RICCI FLOWS AND CONFORMALLY COMPACT EINSTEIN METRICS
作者Authors: JIE QING, YUGUANG SHI AND JIE WU
上傳單位Department: 電子工程系
上傳時間Date: 2012-12-8
上傳者Author: 傅俊結
審核單位Department: 電子工程系
審核老師Teacher: 傅俊結
檔案類型Categories: 論文Thesis
關鍵詞Keyword: ricci flow
摘要Abstract: In this paper, we investigate the behavior of the normalized Ricci flow on asymptotically hyperbolic manifolds. We show that the normalized Ricci flow exists globally and converges to an Einstein metric when starting from a non-degenerate and sufficiently Ricci pinched metric. More importantly we use maximum principles to establish the regularity of conformal compactness along the normalized Ricci flow including that of the limit metric at time infinity. Therefore we are able to recover the existence results in [GL] [Lee] [Bi] of conformally compact Einstein metrics with conformal infinities which are perturbations of that of given non-degenerate conformally compact Einstein metrics.

檔案名稱
FileName
檔案大小
Size
檔案格式
Format
瀏覽次數
Browses
下載次數
Downloads
2012_12_86d8b672.pdf 309Kb pdf 88 17
文件中檔案:
 

開啟檔案Download
 
 
返回前一頁