尚未登入 請由此登入
 
 
 










知識分享平台Eshare檢視資訊View
返回前一頁Back
      [檢舉]

標題Title: Some Progress in Conformal Geometry
作者Authors: Sun-Yung A. CHANG, Jie QING and Paul YANG
上傳單位Department: 電子工程系
上傳時間Date: 2012-12-8
上傳者Author: 傅俊結
審核單位Department: 電子工程系
審核老師Teacher: 傅俊結
檔案類型Categories: 論文Thesis
關鍵詞Keyword: conformal geometry
摘要Abstract: This is a survey paper of our current research on the theory of partial differen- tial equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the σ2-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

檔案名稱
FileName
檔案大小
Size
檔案格式
Format
瀏覽次數
Browses
下載次數
Downloads
2012_12_bded582f.pdf 226Kb pdf 86 9
文件中檔案:
 

開啟檔案Download
 
 
返回前一頁