尚未登入 請由此登入
 
 
 










知識分享平台Eshare檢視資訊View
返回前一頁Back
      [檢舉]

標題Title: RADIAL GROWTH OF HARMONIC FUNCTIONS IN THE UNIT BALL
作者Authors: KJERSTI SOLBERG EIKREM AND EUGENIA MALINNIKOVA
上傳單位Department: 電子工程系
上傳時間Date: 2016-6-8
上傳者Author: 傅俊結
審核單位Department: 電子工程系
審核老師Teacher: 傅俊結
檔案類型Categories: 論文Thesis
關鍵詞Keyword: harmonic functions
摘要Abstract: Let Ψv be the class of harmonic functions in the unit disk or unit ball in Rn which admit a radial majorant v(r). We prove that when v fulfills a doubling condition, a function in Ψv may grow or decay as fast as v only along small sets of radii, and we give precise estimates of these exceptional sets in terms of Hausdorff measures.

檔案名稱
FileName
檔案大小
Size
檔案格式
Format
瀏覽次數
Browses
下載次數
Downloads
2016_6_c5e5f17e.pdf 231Kb pdf 78 --
文件中檔案:
 

開啟檔案Download
 
 
返回前一頁