南台科技大学
电机工程系

專題製作報告

題目：行椅不離 Tag Along Perch
指導教授：陳世中教授
班級：控晶四甲
製作學生：張格理 4992c016
林稚凱 49927008
張柏憲 4992c109

中華民國 102 年 09 月 01 日
摘 要

科技日新月異，機器人在人們日常生活中的應用越來越廣泛，而這些自動化產品最重要的就是要可以融入一般社會大眾的日常生活中，提升我們的生活品質與生活的便利性。而本專題研究「行椅不離 (TAP, Tag Along Perch)」即是為服務群眾而開發出的一項服務性輔具；台灣老年幼年人口比例雖創新高，100年行政院統計資料顯示，老年人口占全國的十分之一，相較於其他亞洲地區國家，略顯偏高，更有專家分析13年後，我國老年人口比例將會超越美國，追上日本，故我們針對這種老年化的人口結構，開發出「行椅不離(TAP, Tag Along Perch)」的隨身座椅，可以廣泛地使用在圖書館、美術館、書展、各式展覽會場等較為空曠的瀏覽或參展場地，甚至可當成銀髮族們未來出門時的新型輔具，既可以當成隨行椅，紓解疲勞，解決老人無法久站或長途行走的問題，而且也不會增加使用者的負擔。平日在大賣場、場地較大的圖書館或各式展覽場時，常因為需要長時間的站立及走動，而產生的疲憊及疲痛導致降低許多人學習閱讀與觀摩的意願，這些人包含了許多老年人、傷障者…。因此，我們從日常生活中賣場裡的手推車、嬰兒推車去延伸構思，想到若能將手推車概念轉換成能讓一般人坐著休息、甚至為老年人、傷障者提供這樣舒適便利的系統，不僅能增加客源也可提供客戶恢復身體疲勞，讓客戶受到更好的服務，保障其參觀採購的權益。

以老年人為例，如表1所示，在台灣老年人口日益漸增，骨質疏鬆或自然退化的問題，造成多數老人，無法久站，害怕長時間站立或走路，導致有意願外出參與活動者並不多。雖然，有很多的手動輪椅或電動輪椅，可以協助老年人或傷障者解決大部分「行」的問題，但礙於自尊心的心理因素，老年人並不見得喜歡以輪椅代步，他寧願自行走路，
等累了需要休息時，再找地方坐下休息。而我們設計的發想，乃是針對上述的原因，提出『行椅不離』的構想，希望能研發一款可跟随使用者行進的智慧型座椅，讓使用者可依疲勞程度需求，隨時有座椅可以休息，而且外觀上，必須設計成不像輔具，方能符合銀髮族的需求。其適用地點，尤其以室內大型空間為主，例如：圖書館、畫展及各式室內展覽場為宜。本座椅的功能，除了可自動跟隨使用者外，亦可搭配其他功能，例如：行事曆預定時間的語音提醒或是行進路線的導航等，除可載人亦可載物。若能廣泛運用這椅子，將會是對於高齡化社會之下老年人的良好服務。

<table>
<thead>
<tr>
<th>年別</th>
<th>65 歲以上</th>
<th>老化指數</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人口數</td>
<td>所占比例</td>
</tr>
<tr>
<td>91</td>
<td>2,031,300</td>
<td>9.020</td>
</tr>
<tr>
<td>92</td>
<td>2,087,734</td>
<td>9.236</td>
</tr>
<tr>
<td>93</td>
<td>2,150,475</td>
<td>9.500</td>
</tr>
<tr>
<td>94</td>
<td>2,216,804</td>
<td>9.700</td>
</tr>
<tr>
<td>95</td>
<td>2,287,029</td>
<td>9.997</td>
</tr>
<tr>
<td>96</td>
<td>2,343,092</td>
<td>10.206</td>
</tr>
<tr>
<td>97</td>
<td>2,402,220</td>
<td>10.428</td>
</tr>
<tr>
<td>98</td>
<td>2,457,648</td>
<td>10.630</td>
</tr>
<tr>
<td>99</td>
<td>2,487,893</td>
<td>10.741</td>
</tr>
<tr>
<td>100</td>
<td>2,489,642</td>
<td>10.745</td>
</tr>
</tbody>
</table>

![表 1. 91-100 年 65 歲以上人口統計及老化指數](image.png)

表 1. 91-100 年 65 歲以上人口統計及老化指數
實驗結果

我們使用NXT為系統設計核心。藉由感測器的偵測與NXT的微控制器程式，設定椅子與人之間保持適當的距離，判斷使用者追蹤其位置，在藉以控制馬達讓整個機器能夠運行。用超音波晶片來偵測使用者追蹤目標，使用超音波晶片來抓取與使用者之間的距離作為機器的移動準則參考。每次回傳數據提高避開障礙的準確度，不會因太近撞到而受傷。接收超音波回傳的數據做分析處理，讓使用者與座椅之間的距離，隨著使用者移動讓椅子也能配合來持續保持與椅子間距離，前進時椅子也能視需要轉換方向，快速地辨識使用者並跟隨行進方向而進行轉彎。由PC將程式碼寫入NXT，以超音波接收的值傳給NXT作運算，再將結果給NXT來控制Motor驅動器來控制Motor馬達，如圖(一)。

![系統控制圖](image)

最後成品如圖(二)，三個超音波偵測分離的距離，經過實際人的行走與機器之間的互動的分析給予隨行椅輸出行為。

![隨行椅完成圖](image)
以下將就目前專題製作之進度，進行簡單說明。椅子在空載行走的時啟動馬達，當停止讓人坐下時，會讓上方鐵架壓至地面，讓承受力較高的鐵架直接承受人體的重量，而不讓馬達及輪子承擔人體重量。在座椅內部放置控制電路，馬達及驅動器，與鐵架間採用彈簧連接，既可以固定且可做升壓。為未坐入的椅子，其鉚釘支架是浮起的，右圖則為使用者坐下椅子，支架貼地的情況，如圖(三)。

圖(三)，左圖是無坐人，右圖是有坐人

實作完的成品，如圖(四)，能準確地跟隨使用者。經過許多討論及改良，較能漸漸避開轉角與其他障礙物，能讓使用者在想坐下的時候隨時有辦法輕鬆地坐下。

圖(四)，隨行機能跟著使用者以及順利坐下的情形
<table>
<thead>
<tr>
<th>工作項目</th>
<th>12上旬</th>
<th>12中旬</th>
<th>12下旬</th>
<th>1上旬</th>
<th>1中旬</th>
<th>1下旬</th>
<th>2上旬</th>
<th>2中旬</th>
<th>2下旬</th>
<th>3上旬</th>
<th>3中旬</th>
<th>3下旬</th>
<th>權重</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.專題計畫</td>
<td>預定</td>
<td>完成</td>
<td>完成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2.專題計畫</td>
<td>預定</td>
<td>完成</td>
<td>完成</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3.修訂與協調</td>
<td>預定</td>
<td>完成</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>4.解決問題</td>
<td>預定</td>
<td>完成</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5.結案報告</td>
<td>預定</td>
<td>完成</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>6.成果評分與發表</td>
<td>預定</td>
<td>完成</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>進度累計百分比</td>
<td>預定</td>
<td>完成</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
南台科技大学机构典藏暨委托上传同意书

立书人(指导教师)同意下列著作以数位方式，无偿提供南台科技大学机构典藏(self-archiving)之用，于著作权合理范围内在南台科技大学机构典藏系统(如 eshare 知识分享平台)中，于网络公开提供读者进行检索、浏览、下载、传输、列印等行为。

本同意书为非专属授权，立书人对授权著作仍拥有著作权，授权著作未侵害任何第三人之智慧财产权。

若著作为二人以上之共同著作，本立书人(指导教师)已通知其他共同著作人上述授权条款，并经各共同著作人全体同意授权。

特立此书，此致 南台科技大学。

著作清单

<table>
<thead>
<tr>
<th>序号</th>
<th>專題名稱</th>
<th>作者簽名</th>
<th>出版年</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>行持ち不離 Tag Along Perch</td>
<td>林維凱</td>
<td>2013</td>
</tr>
<tr>
<td>2</td>
<td>行持ち不離 Tag Along Perch</td>
<td>張柏霖</td>
<td>2013</td>
</tr>
<tr>
<td>3</td>
<td>行持ち不離 Tag Along Perch</td>
<td>蘇格理</td>
<td>2013</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以上共 3 篇著作。

注 1：如资料篇数过多，可自行填写或列印附加於後。
注 2：若有自行修改者，请在修改处签章。

服务單位： 電機工程系 立書人签章： 日期：102/11/20